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Abstract: Precision medicine approaches often relies on complex and integrative analysis of 
multiple biomarkers from “omics” data to generate insights that can help either diagnostics, 
prognostics or therapeutical decisions. Such insights are often made using Machine learning (ML) 
models that make sample classification for a particular phenotype (yes/no). Building such models 
is a challenge and time-consuming, requiring advanced coding skills and mathematical modelling 
expertise. Artificial intelligence (AI) is a methodological solution that has the potential to facilitate, 
optimize and scale model development. In this work, we developed an AI-based, user-friendly and 
code-free platform (https://digitalphenomics.com) that fully automates the development of 
predictive models from quantitative “omics” data. Here, we show the application of this tool with 
the development of cancer survival prognostics models using real-life data from breast, lung and 
renal cancer transcriptomes. We report and compare their sensitivity, specificity, accuracy and 
Receiver Operating Characteristic (ROC) curve Area Under the Curve (AUC). Further, we report 
the associated sets of genes (biomarkers) and their expression pattern that are predictive of cancer 
survival. Moreover, we made our models available as online tools to generate prognostic predictions 
based on the gene expression of the biomarkers. In conclusion, we demonstrated that our tool is a 
robust user-friendly solution to develop bespoke predictive tools from “omics” data which facilitate 
precision medicine introduction to the point-of-care. 

Keywords: software tools; bioinformatics; cancer prognostics; predictive modelling  
 

1. Introduction 

Transcriptomics, proteomics, metabolomics and lipidomics are examples of high-throughput 
“omics” methodologies often described as precision medicine approaches which enable a 
quantitative screening of multiple key biomarkers [1–3]. These methodologies have been often used 
to characterize human tissue variability and correlation with diseases such as cancer in attempt to 
find new biomarkers that predict disease outcomes and response to therapy [2–4]. Transcriptomics 
has  particular importance as is an affordable and accurate gene expression quantification technique 
[1]. Often the identified gene expression biomarkers do not have enough predictive power on their 
own to provide robust insights to decision-making at the point-of-care [5,6]. This has been a persisting 
problem for cancer prognostics as the currently used biomarkers still have low predictive power, 
explaining only 25% to 75% of the cases [7].  

Appling machine learning (ML) modelling frameworks to “omics” data have been considered a 
methodological solution for combining biomarkers and improving the predictive capacity of 
biomarkers [6,8–10]. Once applied ML on a “omics” dataset associated with a phenotype outcome, 
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these frameworks find key features (biomarkers signatures) that compose a predictive model with a 
certain predictive power and performance (e.g. sensitivity, specificity and accuracy) [6,11]. Models, 
in turn, are able to score a new input of “omics” data with unknown phenotype/outcome and make 
a binary phenotype classification (yes/no) [6,8]. However, technical challenges and limitations 
associated with the implementation of ML have been preventing the full application of its potential 
to the point-of-care [12]. One critical limitation is associated to the complexity of developing and 
validating ML algorithms [10,13]. These are hard and time-consuming tasks that require advanced 
coding skills and mathematical modelling expertise to successfully implement and test supervised 
learning classification algorithms [12]. Another, is to choose the correct ML algorithms (e.g. random 
forests, neural networks, support vector machines and regression models) which is suitable to 
describe the data [8,9]. Besides, often the chosen ML algorithm has numerous tunning parameters for 
model refinement, which makes it almost humanly impossible to find the best possible model in 
reasonable timings without a systematic approach. 

Automating ML-based model building and validation through artificial intelligence has been 
proven to be useful for optimal model generation and provides a much faster and more effective 
route to achieving better-performing models [14,15]. Genetic and Evolutionary inspired AI 
algorithms have been used in an attempt to optimize predictive models from “omics” datasets [16]. 
For example, TPOT (genetic) and EvA-3 (evolutionary) are two such algorithms that have been 
applied in the generation of optimal predictive models for early ovarian cancer detection, 
aneuploidies detection and cancer prognostics [14,17,18]. Although these approaches facilitate model 
development, they are not user-friendly and code-free. Further, currently ML algorithms have been 
rendering poor performance predictive models in cancer prognostics using transcriptomics [19]. In 
this work, we develop a novel AI-driven, user-friendly and code-free web platform for the automated 
generation of predictive models from “omics” datasets (https://digitalphenomics.com ). Here, we 
applied the tool for the generation of breast, lung and renal cancer survival prognostics models. 

2. Materials and Methods 

2.1. Tumour transcriptomics datasets 

Tumour transcriptomics datasets were built using real-life biomedical data consisting of TCGA 
transcriptomics data of tumour biopsies of patients with breast, lung and renal cancers [20,21]. 
Transcriptomics data were collected from the 2021 updated records of the Human Protein Atlas 
database which contained mRNA expression (FPKM) of 200 genes from 1075 anonymized cancer 
patients [22,23].  We curated the collected data in the same way as previously done to make it 
comparable with previously generated model performances made by TPOT. Therefore, we selected 
the same 58 genes, considered key components of signalling pathways involved in the regulation of 
epithelial-to-mesenchymal transition, which has a role in cancer invasion and metastasis acquisition 
[24]. From the patient’s metadata collected, we selected transcriptomes associated with patients that 
have been reported to survive over 5 years after the diagnostics (good prognostics) or with a reported 
death lower than 2 years (poor prognostic). The sample numbers of the datasets are summarized in 
Table 1. A CSV dataset file for each cancer type was created with the gene IDs (first column) and the 
respective FPKM mRNA expression values of all patient samples (following columns). We also 
created a metadata CSV file that maps the survival phenotype of each patient sample with the 
expression data on the dataset. The datasets were made available in the digital phenomics platform 
(https://digitalphenomics.com ).   
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Table 1. Cancer transcriptomics datasets and their sampling numbers.  

Dataset  

ID 
Tumour Tissue 

N  

Total 

N good  

prognostics 

N poor  

prognostics 
TCGA refs 

 
TCGA BCSD 

 
Breast 239 199 40 BRCA 

TCGA LCSD Lung 325 94 231 LUSC, LUAD 
 

TCGA RCSD 
Renal 318 210 108 KICH, KIRC, KIRP 

2.2. Platform development 

The Digital Phenomics Platform version 1.0 was developed under a micro-services architecture 
design for scaling with robust performance on multiple servers. These micro-services included: 
Cybersecurity, Encrypted relational database, Encrypted models and datasets storage, Private and 
secure users’ environment, Containers systems for independent running microservices (Docker), 
Queueing system, AI-driven model building; FTP system, API management and supervision; And 
visualization tools. Multiple coding languages and frameworks were used for the development of 
the platform. These included Javascript, Python, HTML, PHP, bash and Nodejs.    

2.3. Model Generation 

Predictive models were generated on the digital phenomics platform 
(https://digitalphenomics.com ) version 1.0. Model generation used the AI software O2P-Mgen 
version 1.0 developed by the Bioenhancer Systems LTD. This AI was programmed to conduct all 
model training, optimization, refinement and validation automatedly. Using this tool, the data for 
model training is selected by the AI with a proportion always lower than 50% of the dataset, leaving 
the remaining data for testing. The AI performs supervised ML to develop models using an 
evolution-inspired algorithm that finds the best combination of biomarkers under a multi-objective 
fitness function for optimal sensitivity and specificity (EvA-3 algorithm version 2.0). To build models, 
the AI was programmed to search for biomarkers characteristics that reflect up-regulations, down-
regulations, gene activations or gene expression inhibitions (e.g. gene knockouts) in the model 
training groups (positives vs negatives). For the cancer datasets, we set as positives the good survival 
prognostics and negatives the poor survival prognostics. By default, the AI only selects biomarkers 
up-regulations and down-regulations on the training data when the p-values are below 0.05 to ensure 
enough statistical significance. In the case of gene activations and inhibitions, the AI was 
programmed to look for a binary expression behaviour on data, considering a residual degree of 
tolerance. Models were constructed by the AI using the generic scoring function (Score), where: Pi is 
the absolute distance between the median level of the biomarker i on the group of positives for the 
phenotype and the sample value; Ni is the absolute distance between the median level of the 
biomarker i on the group of positives for the phenotype and the sample value; Wi is the enrichment 
of the biomarker i on the group positive for the phenotype; and n the total number of the biomarker 
in the model. 𝑺𝒄𝒐𝒓𝒆 = ∑ 𝟏𝟎𝟎 𝑾𝒊 𝑷𝒊 𝑵𝒊𝑷𝒊 𝑵𝒊𝒏𝒊         

3. Results 

3.1. Digital Phenomics Platform  

We developed a novel user-friendly platform, Digital Phenomics Platform, tailored for the 
generation of predictive models from “omics” data. We made this platform available online 
(http://digitalphenomics.com ). The platform is organized into modules that address a particular 
functionality (Figure 1). The GENERATOR module enabled us to build datasets (drag and drop) and 
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build predictive models using the uploaded datasets. Building models was straightforward, only 
requires to press the add button (+) or edit icon and type/modify; models’ name, description, AI 
learning time and maximum false positive rate allowed. Upon saving the request, the AI initializes 
the model building which may take minutes to hours depending on the amount of learning time 
requested. 

 

Figure 1. Digital Phenomics Platform under the generation of models. On the right, there is an 
actionable link for the GENERATOR and PREDICTOR modules. Models link on GENERATOR 
returns a table that shows all models developed and enables editing (pencil icon) or creating a new 
model (+ icon). . 

Once a model is generated, its characteristics and performance can be analysed by clicking on 
the bar icon. This generates a table with their; predictive biomarkers, median levels (positive 
prediction), type of predictive regulation (e.g. up-regulation, down-regulation) and the associated p-
value. A dynamic ROC curve and a heatmap of the predictions is generated, which optionally can be 
download. The heatmap shows the biomarkers scoring, overall predictive score, and outcomes on all 
the data used to build the model. With this heatmap, users can easily identify the false positives and 
negatives. To generate predictions from unknown samples using the models, we implemented the 
PREDICT module (Figure 2). In this tool, it is required to insert the values of the model biomarkers 
and submit them for prediction. Upon submission, the results are shown instantaneously on the 
platform in a visually and intuitive manner.  

 
(a). 
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(b) 

Figure 2. The PREDICTOR module tool User interface on the digital phenomics platform. (a) Model 
selection and biomarker input values. (b) Unknown Sample prediction example using the PREDICT 
tool. 

3.2. Testing Model Generation with Transcriptomics data 

We tested the model generation potential of the Digital Phenomics Platform with real-life 
tumour transcriptomics datasets (table 1). Using these datasets, we request the generation of 100 
models for cancer survival prognostics with AI learning times ranging from 1 to 120 min with a 
maximum of false positive rate of 25% and repeated 5 times. All models were successfully generated 
with specificities > 75% fulfilling the user setup requirement, indicating that the tool is robust. The 
accuracy of the generated prediction tools was also checked by recapitulating the datasets outcomes 
and prediction scores, where we manually checked the 3 models and calculated the sensitivities and 
specificities. The generated models’ ROC’s AUC shows an increase of predictive power with learning 
time, reaching a plateau between 30-60 min (Figure 3). The results also indicate a performance 
variability in model building independent of the learning time. On the other hand, these results show 
that the predictive power is also dependent on the dataset. In contrast, the number of predictive 
biomarkers identified by the AI negatively correlated with the overall models’ performance, 
indicating that the AI was struggling to make models from the renal and lung transcriptomics 
datasets. Further, the model generation was observed to be approximately 2.4 times the learning time. 
This is because the AI uses the user-defined learning time to model refinement and requires to 
dedicate time to process the data for finding the synergic effect of biomarkers on model performance.  

 
(a) 
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(b) 

Figure 3. Generated cancer survival prognostic models attempt for breast, lung and renal tumour 
transcriptomics datasets. (a) ROC-AUC as a function of AI learning time. The AUC of the ROC is 
considered here as the main index of predictive power (b) Number of predictive biomarkers in each 
model as a function of the AI learning time. All models built were conducted at a 25% maximum false 
positive rate allowed. . 

3.3. Cancer Prognostic Models  

We developed breast, lung and renal cancer survival prognostic models using the 
transcriptomics datasets (Table 1) and the digital phenomics platform. The models are made available 
for the generation of predictions on https://digitalphenomics.com. The models performance, the 
number of predicted biomarkers that compose the model and their scoring cut-off are presented in 
Table 2. The obtained model’s ROC’s curve (Figure 4) and their area under the curve values (Table 2) 
indicates these models have good predictive power [25]. The sensitivity, specificity and Accuracy of 
the Breast cancer prognostic model were superior to 85% (Table 2), indicating that this model has a 
good performance, suitable for making predictions on new cancer transcriptomics data [25]. Lung 
and renal cancer models had lower performances (Table 2) but yet with sensitivities, specificities and 
accuracies always superior to 70%, indicating that these are reasonable models to generate 
predictions on new data [25]. The biomarkers of the cancer prognostic models and their associated 
predicted behaviour is represented in Figure 5. We found mainly up-regulations and some down-
regulations of gene expression in cancer survival phenotypes. Interestingly, these results show both 
distinct and conservative gene expression patterns between breast, lung and renal cancer. We 
identified 8 genes (PI3K, β-catenin, MET, EGF, TCF, LEF, Delta1 and Frizzled) that have up-regulated 
expression and 1 (SNAIL1) with down-regulation, conservative across the 3 cancers types. 

Table 2. Performances of the best cancer survival prognostic models generated by the digital 
phenomics platform. 

Model Cancer  
N  

Biomarkers 
Sensitivity Specificity Accuracy  AUC  Cut-off  

BCM Breast 25 84.9% 85.0% 84.9% 86.1% 220.7 
LCM Lung 49 72.3% 76.2% 75.1% 77.0% 690.0 
RCM Renal 43 75.7% 79.6% 77.0% 82.1% 530.2 
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Figure 4. Receiver Operating Characteristics (ROC) curves of the selected cancer survival prognostics 
models (Table 2).  ROC’s adapted from the ones downloaded from the digital phenomics platform. 

 

Figure 5. The identified regulatory pattern of gene expression of the predictive biomarkers of each 
prognostic model. Models are indicated by BCM (breast cancer model), LCM (lung cancer model), 
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and RCM (renal cancer model). Red indicates up-regulation, blue indicates down-regulation and grey 
indicates no predictive effect. All 58 Genes in the datasets are depicted in the y-axis, and gene product 
names are shown instead of the Ensembl gene IDs.  

4. Discussion 

Current “omics” based precision medicine frameworks still rely on experienced 
bioinformaticians with expertise in data science and modelling to generate ML based predictive [13]. 
Although this is an ideal scenario for the academy, it is not efficient to implement such frameworks 
to the point-of-care as it is required to scale it to the population level. Our developed solution using 
AI replaces the role of the specialized bioinformatician modeller and made it possible unspecialized 
laboratory personnel to generate and apply predictive models as online tools to the point-of-care. 
This is mainly because our tool is user-friendly, and doesn’t require users to have any coding and 
advanced mathematical modelling skills. Furthermore, the tool was designed for scaling to large 
datasets and multiple users working in parallel. This makes it possible for many academic or industry 
related laboratories to apply ML on “omics” data without investing in specialized human resources 
and computational resources, which can be an economic burden above £100,000 per year. Thus, we 
believe that our solution may have an impact on opening new possibilities to academic labs, start-
ups and diagnostic companies that want to focus on precision medicine approaches.   

Although our platform solution showed robust results, we highlight some limitations and 
disadvantages in comparison to other solutions. One is the fact that the digital phenomics platform 
relies only on a scoring-based evolutionary algorithm for model generation, whereas other AI-driven 
auto ML frameworks such as TPOT use an exclusive library of algorithms that include random 
forests, support vector machines and neural networks [14]. Another limitation is that it can only 
develop supervised learning classifiers (yes/no) which require a list of categorical features 
(biomarkers) associated with numerical values (quantitative data). This brings some uncertainty in 
the generated predictions when it’s near the scoring cut-off of the phenotype yes/no decision. The 
observed variability associated with the performance of generated models in each attempt and the 
dependency of the dataset can be also considered as a limitation of this technology. This implies trial-
and-error attempts from the users to get the best-performing model. Furthermore, once new data 
comes, a model does not update automatedly by the AI. It is required a user intervention to conduct 
another model development attempt. A future version of the AI algorithm should take into account 
these limitations towards improvement that minimizes the impact of these limitations.  

Importantly, the Digital Phenomics Platform have rendered promising breast, lung and renal 
cancer survival prognostic models from tumour transcriptomics data (Table 2). Our models rendered 
much higher predictive power (86% >AUCs > 77%) in comparison to the ones generated using TPOT 
on the same datasets (70% >AUCs > 48%) [19]. This suggests that our AI-driven modelling framework 
outcompetes the capacity of the compendium of ML algorithms implemented in TPOT for 
transcriptomics data. In comparison to other published ML models, our model for breast cancer 
prognostics performed with a superior sensitivity (86%) in comparison to the reported 35-64%, 
whereas the specificity was inferior (85%) to the 97-99% [26]. Besides, the obtained AUC for the breast 
cancer prognostic model (86%) was comparable to the 80-92% reported for other models [26]. For 
lung and renal cancer prognostic models, we obtained in this work slightly superior (up to 10%) in 
comparison to the ones published using other modelling approaches [27,28]. This suggests that our 
cancer prognostic models are competitive alternatives to the ones already published.  

Interestingly, the obtained conservative patterns of gene expression among cancer types are 
compatible with the main markers of epithelial phenotype (β-catenin) and incompatible with the 
markers of the mesenchymal phenotype (SNAIL1) [24,29]. This may explain partially the survival 
prognostics as the mesenchymal phenotype and the overexpression of SNAIL1 is often correlated 
with cancer invasion, whereas the epithelial phenotype often correlates with benign cancers [30,31]. 
However, the other biomarkers identified are considered to be involved in epithelial-to-mesenchymal 
transitions, known to be highjacked during cancer invasion [32,33]. According to a regulatory 
network model of epithelial-to-mesenchymal transitions, the identified biomarkers are more 
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compatible with mesenchymal than a more invasive hybrid phenotype [24,34]. Thus, our results 
agrees with this idea, but also highlights the complexity and heterogenicity of cancer deregulations 
and its correlation with survival prognostics [7,26,28,35].      

5. Conclusions 

In this work, we developed a novel AI-driven platform for the generation of predictive models 
from ‘omics’ data. Here, we demonstrated that the platform is a user-friendly, coding-free, robust 
and scalable solution suitable to be applied as a precision medicine tool in the point-of-care. This was 
illustrated with the application of the platform for the generation of breast, lung and renal cancer 
prognostics from transcriptomics data. Importantly, with this work, we enabled the usage of 
competitive and novel cancer prognostic models which can be accessed online for the generation of 
predictions through the digital phenomics platform. 
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