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Abstract: Cancer prognostics using tumour transcriptomics is a promising precision medicine ap-
proach for helping decisions during cancer treatment. However, currently used cancer prognostic
biomarkers still have low predictive power. This work tested the potential of applying machine
learning (ML) algorithms for generating patients’ survival prognostics on lung, breast, and kidney
tumour transcriptomics datasets. We evaluated the performance of models generated by ML and
reported their optimal sensitivity, specificity, accuracy, and computed ROC-AUC. The results support
the potential for applying auto ML approaches for the future development of cancer prognostics tools
based on transcriptomics data.
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1. Introduction

Cancer is a worldwide flagellum, leading to millions of deaths per year. The success
of cancer treatments often depends on the choice of the correct treatment [1]. Treatment
success is associated with tumour heterogenicity and genetic factors. Cancer prognos-
tic biomarkers are considered a promising personalized medicine approach for helping
decision-making during cancer treatment [2]. Cancer prognostic biomarkers still have low
predictive power, explaining only 25% to 75% of the cases [2]. Transcriptomics is an afford-
able and accurate high-throughput methodology often described as a promising precision
medicine approach that enables the quantification of gene expression levels of multiple
genes [3]. The application of machine learning (ML) frameworks on transcriptomics data is
thought to have the potential to identify biomarker signatures for a binary classification
(yes/no) of patient’s survival with predictive power [4,5]. However, this approach is still
not applied as a solution for treatment prognostics.

Multiple ML algorithms can be applied in bioinformatics to combine biomarkers to
improve models’ predictive capacity [5,6]. Further, there is an infinite possibility of models
that can arise from these algorithms due to all possible parameter combinations making
it hard and labour-intensive to find optimal models. Auto ML approaches have proven
useful for the optimal model generation with reasonable computational effort and provide a
much faster route to achieving better-performing models [7,8]. This work used an auto ML
approach to test the potential of ML for generating transcriptomics-based cancer prognostic
predictors for lung, breast, and kidney cancers transcriptomics datasets. Here, the model’s
performance was evaluated and reported their optimal sensitivity, specificity, accuracy, and
computed ROC-AUC.
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2. Methods
2.1. Data Collection

Transcriptomics data were collected from the 2021 updated Human Protein Atlas
database records, which contained mRNA expression (FPKM) of 200 genes from 1075
anonymized cancer patients [9,10]. The TCGA transcriptomics data of breast, lung and
renal cancers biopsies were downloaded from these sources. Metadata including patients’
age, sex, survival time after biopsy and time of death were also collected from this source.

2.2. Dataset Construction

From collected transcriptomics data, 58 genes were selected. These 58 genes are key
components of signalling pathways involved in the regulation of epithelial-to-mesenchymal
transition, which plays a critical role in metastasis acquisition [11]. From the collected
metadata, we select only the transcriptomes associated with patients who have been
reported to survive over 5 years after the diagnostics (good prognostics) or with a reported
death within the first 2 years (poor prognostics). The sample numbers of the final curated
datasets used in this work are summarized in Table 1.

Table 1. Cancer transcriptomics datasets and their sample numbers.

Tumour Biopsy Number of Patients Good Prognostics Poor Prognostics

Breast 239 199 40
Lung 325 94 231

Kidney 318 210 108

2.3. Auto Machine Learning Framework

Models were generated using the Tree-Based Pipeline Optimization Tool (TPOT).
TPOT is an open-source software package developed in Python for an automated gen-
eration of ML-derived predictive models [7,8]. TPOT relies on genetic programming to
generate predictive models with optimal performance, testing multiple ML algorithms
and modelling parameters [8]. The open-source TPOT version 0.11.7 was installed under
Python 3.9 anaconda distribution. TPOT auto ML pipeline was implemented and run
under the Jupyter notebook environment. All scripts were run on a MacBook pro with a
2.4 GHz 8-Core Intel Core i9 processor.

2.4. Model Generation and Evaluation

The TPOT Classifier method was used for model training, testing and optimization. It
was set up to perform 100 generations with a population size of 50 randomly selected ML
algorithms. Optimization criterium was set to find the optimal Receiver Operating Curve
(ROC) given by the Area Under the Curve (AUC) value. A random selection of 50% of the
data were used in training and the remaining for testing [12]. Models’ final performance
was computed by generating predictions using the selected models on all data selected for
training, and then calculating the accuracy, sensitivity, specificity and ROC-AUC [13].

3. Results

We applied the auto ML framework (TPOT) on the curated datasets of breast, lung,
and kidney tumour transcriptomics (Table 1) for generating patient survival prognostics.
TPOT ran for about 1 h on each dataset, generating and testing an average of 2.6 mod-
els/second, evaluating a total of 10,000 different variants that use and combine distinct ML
algorithms (e.g., Random Forest, Naïve Bayes, Neural Networks, and many others). The
best-performing algorithms selected were substantially distinct among cancer types with
different performances (Table 2).
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Table 2. Generated optimal predictive models and their associated performances.

Tumour Biopsy Algorithm Pipeline SEN * SPE AUC ACC

Breast Multinomial Naïve Bayes with
Random Forest 94% 58% 53% 84%

Lung KNeigbours with Random Forest 59% 83% 48% 52%
Kidney Normalized Random Forest 94% 66% 70% 71%

* SEN (sensitivity); SPE (specificity); AUC (Area Under the Curve); and ACC (accuracy).

The results obtained (Table 2) showed that predicted models generated for breast and
kidney cancer prognostics performed with very good sensitivity (SEN = 94%). However,
these models had poor specificity (SPE < 66%), which indicates a huge tendency to generate
false positives if applied to predict the survival of a patient with a tumour [13]. In contrast,
the predicted model obtained for lung cancer prognostics had a reasonable specificity
(SPE > 83%) but with a poor sensitivity (SEN = 59%), indicating a high tendency for gener-
ating false negatives [13]. Further, the obtained ROC-AUCs showed that only the kidney
cancer prognostic model has good predictive power (AUC > 70%) with reasonable accuracy
(ACC > 70%), indicating that only this model, among all, generates robust predictions not
given by chance [13].

The performances obtained from the models generated by TPOT (Table 2) also showed
that the currently available ML algorithms are not enough to generate high-performance
models on our cancer transcriptomics datasets. This low performance may be explained
by cancer heterogenicity, missing key regulatory genes on the dataset, or confounding
variables associated with the clinical data (age, gender, ethnicity, death reasons, and treat-
ment choices).

4. Conclusions

This study demonstrated that the auto ML approach is a powerful methodology
for the fast and systematic generation of predictive models that can be applied in cancer
prognostics from tumour transcriptomics. Here, we illustrated the ML approach application
with three types of cancers that showed promising performances, particularly for kidney
cancer. Moreover, the results in this work support the idea of technical challenges in this
modelling framework that justify future work for improving either the data or the tools to
generate predictive models.
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