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Abstract: Clinical bioinformatics is a newly emerging field that applies bioinformatics techniques for
facilitating the identification of diseases, discovery of biomarkers, and therapy decision. Mathematical
modelling is part of bioinformatics analysis pipelines and a fundamental step to extract clinical
insights from genomes, transcriptomes and proteomes of patients. Often, the chosen modelling
techniques relies on either statistical, machine learning or deterministic approaches. Research that
combines bioinformatics with modelling techniques have been generating innovative biomedical
technology, algorithms and models with biotech applications, attracting private investment to develop
new business; however, startups that emerge from these technologies have been facing difficulties
to implement clinical bioinformatics pipelines, protect their technology and generate profit. In this
commentary, we discuss the main concepts that startups should know for enabling a successful
application of predictive modelling in clinical bioinformatics. Here we will focus on key modelling
concepts, provide some successful examples and briefly discuss the modelling framework choice. We
also highlight some aspects to be taken into account for a successful implementation of cost-effective
bioinformatics from a business perspective.

Keywords: predictive modelling; clinical bioinformatics; mathematical models; diagnostics; prognos-
tics; clinical applications

1. Clinical Bioinformatics Role and its Dependency on Predictive Modelling

Clinicians consider access of patients’ genetic information from genomes, transcrip-
tomes, proteomes and metabolomes as advantageous for improving diagnostics and prog-
nostics of diseases [1–5]. Accessing clinically relevant information from these ‘omics’ data is
considered by many as precision medicine, which has the potential to enable more personal-
ized and effective medicine [1,4,5]. Current advances in Next Generation Sequencing (NGS)
and Mass Spectrometry (MS) technologies made possible the characterization of genomes
and quantification of proteomes from patients’ biological samples with reasonable accuracy
and scalability, compatible with its application in the clinical point-of-care [6–11]; however,
data from these technologies is too complex to be humanly handled and interpreted by
clinicians. Bioinformatics is fundamental for providing humanly readable and clinically rel-
evant genomics and proteomics interpretations from NGS and MS techniques [1,3,8,9]. For
these reasons, bioinformatics is considered as a fundamental bridge between clinicians and
‘omics’ technology making this field quite attractive to the medical community. Another
attractive feature of bioinformatics is also due to its potential to facilitate the automation
of data analysis and opens the possibility for “big data” processing [12–15]; this will be
advantageous when the new digital Era fully reaches the medical industry and clinical
laboratories [7,16]. Although bioinformatics has its origins in evolutionary biology and inti-
mately linked to genomics, a new clinically focused branch is growing fast and diversifying
from the traditional bioinformatics [3,17]; this is called by many clinical bioinformatics and
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its objectives are focused on obtaining diagnostics, prognostics, or therapy assessment out
of the data from an individual patient. The clinical bioinformatics branch is expected to
play a central role in facilitating the identification of genetic diseases, the discovery of novel
biomarkers, characterization of pathogens and enable a more informed decision for the
therapeutical strategy to follow [3,18,19].

Predictive modelling on the other hand is a speciality commonly used in data science,
computational biology and systems biology for more than six decades [5,20]. Recently,
researchers have been proposing the combination of predictive modelling approaches with
bioinformatics for improving current practices in disease identification, therapeutics and
prognostics [13,18,21–23]; these have been shown advantageous to unlock the full potential
of many high-throughput technologies as solutions for large population screening of
multiple disorders and precision medicine; this is evident for high-throughput technologies
such as mass spectrometry and next-generation sequencing which contains a huge and
complex amount of information that require both high computer processing power and
advanced mathematical modelling approaches for translating the complexity of the data
into clinically relevant predictions [5,13,21]. Therefore, predictive modelling is set to play
a key role in clinical bioinformatics, which should become part of the standard clinical
bioinformatic pipelines as a downstream analysis step following a traditional bioinformatics
pipeline; however, this step needs to be integrated with typical bioinformatics pipelines
from genomics, proteomics and transcriptomics. In each of these cases, the predictive
modelling step takes as input the bioinformatically curated “omics” data, integrates it with
other sources of patient data (metadata) and generates an output that should be relevant
phenotype information readable by a clinician; this integration is not an easy task and
would depend on high-throughput data, the available metadata, the target disease and
more important the choice of the modelling framework.

2. Key Concepts of Predictive Modelling in the Clinical Context

Despite the efforts for conveying the correct role of predictive modelling in the clini-
cal context, there is still some misunderstanding in the medical and biotech community
regarding key concepts underlying its application [18,24–26]; this often results in either
undervaluing the modelling step or extrapolating it to a science fiction story. To fully un-
derstand the clinical applications of predictive modelling and their caveats, we should start
by simply defining what is a predictive model in the first place. A predictive model is any
mathematical abstraction of a system which generates a prediction of an unknown system
component/property based on known system components [24,27,28]. In our case, the
model is a conceptual description of a biomedical system of interest, where the components
of the system are:

• Biological relevant and measurable or observational entities (dependent variables),
which are the inputs of the model.

• Relational factors between variables with or without biological meaning (parameters),
which can be estimated empirically or based on data fitting methodologies.

• Unknown clinical entities or properties of interest for prediction (dependent variables),
which are the outputs of the model.

Models can be formally translated through mathematical equations, graphs containing
processes with gate decisions or even more complex mathematical objects [24,25,28]. Mod-
els should be as accurate as possible in descriptions of the system and validated against
enough data in an unbiased and independent manner [26,27,29]. In theory, we can always
find a conceptual model behind any diagnostic methodology [18,27]; however, it is impor-
tant to highlight that there is always a certain degree of uncertainty associated with any
prediction generated by any model [29,30]. Thus, the clinical application of a predictive
model depends on the evaluated performance during the validation process. For example,
a mathematical model can be considered as part of a diagnostic test if the performance
exceeds the minimum sensitivity and specificity required by medical authorities [18,29].
Usually, these values are around 97% but can change depending on the country and disease.
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Otherwise, models fall into a predictive category and should be taken as an indication or
tendency for such possibility, where the clinician’s interpretation and judgment is abso-
lutely necessary. In this scenario, the model prediction is useful as supporting information
for the clinician, which is always better than relying on chance, intuition or based on the
outcomes of previous patients. In general terms, predictive models should be seen as
insights that enable a clinician to make a better informed and supported decision [17,18,20].

3. Examples of Clinical Applications of Predictive Modelling

There are several types of modelling techniques that can be used in bioinformatics for
clinical diagnostics and prognostics. We listed the most frequently used in clinical contexts
and describe their basic characteristics in Table 1. The most straightforward application of
predictive models is the capacity of generating a prediction for the future [26,29]; this can
be applied in the clinical context for the generation of disease prognostics for example for
predicting; the emergence of developing a particular genetic disease, disease evolution, im-
pact on life expectancy, impact on the society or even the success of a given treatment [24–27].
Predicting survival expectancy and response to treatments based on information from a
given tumour biopsy characterization is an application that is often attempted by multiple
predictive modelling approaches such as statistical, machine learning and logical network
modelling [26,31–38]. Another interesting example is the modelling efforts conducted for
predicting the impact and control of SARScov2 transmission effects and control during the
COVID-19 outbreak [39–42]. In these works, statistical and Ordinary Differential Equa-
tions (ODE) based models have been successfully used for predicting expected peaks of
infected, hospitalized and the timings by which the peaks occurred. Further, simulations
from Susceptible and Infected ODE models also predicted useful information for the deci-
sion of implementing controlling measures that minimize the total of deaths in a certain
region [39–41].

Predictive models are also useful for the detection of diseases in an early stage, in
particular, if current diagnostic methods fail and the treatment efficiency benefits from
early detection. One good example of this scenario is the poor detection rates of 40%
observed during ovarian cancer screening programs [43,44]; this type of cancer does not
show symptoms up to later stages and by then the treatment success is largely compro-
mised. Some statistical and machine learning models have successfully combined multiple
biomarkers resulting in surprisingly high sensitivities (>90%) and reasonable specificities
(> 80%) which largely outcompete the sensitivities and specificities obtained under current
screening programs [23,45]. The application of such modelling approaches at the point-
of-care would definitely improve the identification rates at early stages potentially saving
thousands of lives of women from ovarian cancer every year.

Another clinical application of predictive models is the generation of insights when
the current diagnostic methodologies are too invasive and put at risk the health of the
testing subjects [46,47]. One illustrative example of this scenario is the detection of genetic
diseases in prenatal screening by amniocentesis and pre-implantation embryo testing using
post-freezing PGT-A next-generation sequencing techniques [12,48–52]. In both cases, the
procedures for conducting genetic testing are too invasive, compromising the viability of
pregnancy and embryo survival during implantation. Machine learning models have been
quite successful in predicting aneuploidies from indirect data such as embryo secretome
in culture media and urine [48,49]. Impressively, predictive models from mass spectral
patterns of secretome have rendered sensitivities very close to the diagnostic level with
reasonably tolerable false positive rates, enabling affordable and non-invasive testing [48].
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Table 1. Often used modelling techniques in clinical bioinformatics and their main characteristics.

Modelling
Technique Description Application Requirements

Statistical

Scoring and probability
functions that assumes a
distribution shape or
behaviour.

Continuous
Quantification

Data for parameter estimation.
Depend on sample size.

Kinetic

Solving of systems of
nonlinear differential
equations. Do not assume any
behaviour. Instead relies on
rate laws of processes such as
chemical reactions.

Binary
Classification

Requires reported or
estimated kinetic parameter.
Do not depend on sample
size.

Logical

Solving of logical equations
based on predefined rules for
each component. Assumes
asynchronous or synchronous
update schemes.

Binary
Classification

Requires relational knowledge
of its components. Do not
depend on sample size.

Regression

Fitting of an assumed
mathematical equation on
data. Often are used models
that describe a particular
assumed data behaviour such
as linear, polynomial,
exponential, and logistic.

Binary
Classification

Data for model fitting.
Depend on sample size.

Random
Forests

Supervised machine leaning
algorithm based on averaging
multiple generated decision
trees.

Binary
Classification

Data for model training and
validation. Requires large
datasets

Support
Vector

Machines

Supervised machine leaning
algorithm based on clustering
algorithms such as principal
component analyses.

Binary
Classification

Data for model training and
validation. Requires large
datasets

Neural
Networks

Supervised machine leaning
algorithm based on defining a
set of neuron and layers as
model components. Assumes
all possible relational
interactions between neurons.

Binary
Classification

Data for model training and
validation. Requires large
datasets

Sequence-based prediction of pathogenic genetic variants (Single Nucleotide Polymor-
phisms, insertions or deletions) is becoming now a very important modelling application in
clinical bioinformatics, in particular for the identification of rare genetic diseases [53–55]; these
are based on predicting deleterious effects on protein function from gene sequence based on
evolutionary conservation of sequence motifs or on machine learning approaches. There are
multiple successful examples of models and tools with reasonable sensitivities over 85% such
as SIFT, mutation taster, mutation accessor, Fathmn, Phanter and Polyphen-2 [54].

4. Choosing the Correct Modelling Framework

Choosing the correct modelling framework is a critical step in developing a suitable
model and often is neglected from the beginning [5,56,57]. In most cases, researchers often
start from their favourite modelling framework in an attempt to apply it in a given problem;
this is not the best policy and resembles the usage of a hammer to perform all construction
labour. Ideally, we should first gather the available data, available knowledge of the system
we want to model and access which is the best suitable modelling framework for that
particular case [27,58]; this is very tedious and theoretical research work but often pays
off as it will save time later on by preventing reaching dead ends where models do not
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describe the systems, cannot be validated or their performances are simply not different
from flipping a coin. Here, we briefly describe some advantages and disadvantages of the
most promising modelling frameworks with clinical applications.

Machine-learning is a very powerful approach which is ideal for building disease clas-
sifiers with yes or no outcomes [8,21,59,60]. For the choice of this approach, it is mandatory
to have sufficiently large datasets where the disease outcomes are known [21,60]; this is
an absolute requirement for the training and validation of models. Using this approach, it
is recommended to try multiple algorithms that have been quite success with biomedical
data such as random forests, neural networks, regression models and support vector ma-
chines [21,60]. Neural networks (NN) and Recurrent Neural Networks (RNN) are particular
important types of machine learning algorithms based on its high efficiency and robustness
if well implemented and validated [61,62]; this is particularly important for modelling
sequence-based phenotypes with clinical relevance. Hyperparameter exploratory analysis
is also a necessary task in this approach, which can be an extensively time-consuming
and computationally heavy [59,63]. Most of these algorithms are available in R packages,
python libraries and even in Auto ML tools which is a huge advantage that facilitates
the implementation of automated workflows for the model generation [63,64]; however,
machine learning approaches are “black box” models which are prone to overfitting and
artefactual models [21,60,65]. Thus, such modelling frameworks require additional and
periodically checking of their reliability; moreover, the absence of knowing the exact ratio-
nale behind such prediction with some algorithms may cause difficulties in registration of
diagnostic tests and patents.

Statistical models are the most conservative modelling approaches used in clinical
contexts [21,66,67]. The development of these types of models relies on the choice of a theo-
retical statistical model and requires the estimation of its parameters with data. Often this
approach is combined with machine learning algorithms for data fitting-based parameter
estimation [21]. Statistical models can offer an estimated probability of having or not a
particular disease; this brings an advantage over classification models in particular for the
scenarios that best describe “gray” zones of uncertainty making them more realistic than the
yes/no classification models This type of modelling depends on sample size numbers but
often do not require large datasets as in machine learning approaches. Another advantage
of this modelling framework is that is simple and has a straightforward implementation
in laboratory software tools. A good example of these advantages was capture for the
screening of multiple blood disorders using mass spectrometry, where we implemented
a cumulative probability function in a laboratory software tool that enables automated
estimating of the probability of a patient having a particular type of hemoglobinopathy on
a large scale of analysis, applicable to population screenings [22].

Deterministic frameworks such as ODE-based (also called kinetic) and logical modelling
are powerful quantitative (kinetic) and discrete modelling approaches (logical) [28,30,68].
Both are by far more descriptive in comparison to statistical and machine learning. The
underlying principles of these frameworks rely on the laws of chemistry, physics, biochemical
circuits and mathematics, making them more realistic and robust for finding drug targets and
predicting therapeutic effects [24,27,28]. For example, exploring kinetic and logical models of
signalling pathways in cancer growth and invasion results in predicted effects of drug targets
for cell decisions that can be useful for therapy choices and predict cancer aggressiveness and
progression [33,34,36,69–71]. In contrast with statistical and machine learning, this approach
does not rely on sample sizes but requires extensive literature knowledge including knowing
parameters and relational laws [27,28]. Developing such models is a huge investment of effort
and time-consuming in comparison to the other frameworks as are more complex in terms of
variables, and development and require an huge in-depth knowledge of the system; these
models may take years to develop and depend on the availability of existing literature data
or the capacity to estimate them experimentally [27,28]. In comparison, kinetic models are
always preferable to logical as they are more accurate descriptions of the systems and provide
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a quantitative assessment [28,30,68]. The only advantage of choosing logical modelling is in
the case where the kinetic parameters (e.g., rate constants of the processes) are unknown [28].

5. Challenges of Clinical Bioinformatics: The Business Perspective

Innovative technology coming from academic research related to clinical bioinfor-
matics is attracting private investment and generate new startups. Most of these startups
come from the academic labs which have developed during research projects attractive
state-of-the-art bioinformatics algorithms and pipelines that can be applied to a new service
or product that potentially can generate growth [3,8]. Upon investment, these startups face
a paradigm change that constitutes a huge challenge for both academics that migrate to the
industry and investors that need to guarantee the revenues of their investment. One of the
main initial issues that most startups are facing is related with software tools and copywrite
issues. In bioinformatics, the current way of thinking is based on the usage of command line
tools which were developed for academic purposes and are restricted to commercial usage.
Sometimes the developed technology utilizes such tools which causes software license
issues; this forces startups to either develop their own “in house” workflows almost from
scratch which is time-consuming, or buy the respective licenses which in most scenarios
can compromise the business sustainability.

Another key issue is the patient’s data; this is often a very sensitive issue which
requires following an ethics protocol of personal data protection during data acquisition,
storage and analysis [8,72]. Thus, it is absolutely mandatory to implement a secure database
system for protecting patients’ personal data and still enabling the bioinformatics pipelines
to access some metadata of relevance for conducting the analysis [72]. A simple solution for
this could be through using anonymized data pulling during the analysis and automated
reporting that can be generated through the usage of secure relational databases.

Code protection is quite trivial in most informatics companies as a standard of best
practices but in most academic bioinformatics groups the data is often saved in the postdoc
personal computer and publicly available in multiple GitHub accounts. Although this is a
severe data security breach it makes it impossible to get copyrights and patents leading
to a business loss or a huge shift from original technology [72]. Ideally, the code and also
the data should be stored in data centres for ensuring enough security, privacy police and
maintenance with proper SSL certificates. Additionally, proprietary code should also be
store into private GitHub or GitLab accounts for organizations with suitable ownership
of the company and restrictive accessions of developers from both inside and outside of
the organization. Both GitHub and GitLab enables such functionalities even for free as
this is standard in commercial-based informatics projects and businesses. Ideally, these
practices should be taken into account as early as possible, even during the phase of
technology development.

Often, the transition from the academical environment to an industry startup environ-
ment must follow a huge change in the mind set of researchers; this includes the way to
think and work also. From individually tacking a project to teams within compartmental-
ized projects, to following standard methods of software development like management
frameworks like agile and the available implementations such as Kanban board; this last
agile implementation is a very popular and flexible solution which is frequently available in
many online software tools such as GitHub and Jira. The focus will be no longer, addressing
a question and understanding a mechanism. Instead, the focus is finding solutions that are
robust and meet company objectives with defined deadlines. One solution to facilitate this
is to take advantage of available online courses in the field of informatics that can introduce
the best practices to follow for project management and tools; this would help substantially
researchers to optimize and adjust their way of working and tackling projects.

Scalability is also another issue to deal, as most of the technology is thought as an
analysis service conducted by bioinformaticians as users; this would eventually become
saturated because finding bioinformaticians as work force is limited and not an easy
task [8,64]. Besides, the cost-effectiveness of the service is also compromised as well the
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competitiveness simply because bioinformaticians are not cheap labour. In this case, the
ideal system would the implementation of automated pipelines that conduct the analysis
without human intervention under a software as a service business model (SaaS); this would
ensure both scalability and cost-effectiveness as there is only need for a bioinformatics
team to maintain and improve the pipelines. Therefore, hiring the correct bioinformatics
team is fundamental for the health and growth of the startup; this is often neglected and is
indeed a difficult task to find such highly specialized professionals which sometime can be
considered as rare unicorns.

6. Conclusions and Perspectives

Predictive modelling approaches have a fundamental role in ensuring the applicability
of bioinformatics in the clinical context; it is also fundamental to invest in the correct
modelling framework for each case and properly integrated with the bioinformatics pipeline
and high-throughput technology to ensure the robustness of results given to a clinician and
a technological gain in comparison to current methodologies available.

Clinical bioinformatics is still in its initial phase of growth and many startups are only
now emerging from new born innovative technology coming from academia. Yet there
is a long learning and adaptative process for successfully migrating from an academical
mindset towards sustainable clinical bioinformatic services. There are still many challenges
to overcome in the future to ensure a successful acceptancy of clinical bioinformatics and
its generalization to the point-of-care. The future of clinical bioinformatic may depend on
choosing a suitable and modern business model such as SaaS to ensure the sustainability of
clinical bioinformatics services. In the future, this would be fundamental for keeping up
with a possible scaling up of the demand for bioinformatic services from clinicians. Also
keeping up with migration of clinical data to its digital form and becoming compatible
with “big data” processing.
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